Spiral Review

Use the graphing calculator, find the first five terms of the sequence.

$$1. a_n = 3n - 5$$

$$a_3 = 4$$

$$Q_{4} = 7$$

$$Q_5 = 10$$

2.
$$a_n = 6 + 3(-1)^n$$

$$Q_2 = Q$$

$$Q_{\mu} = Q$$

p.581 8.2 Arithmetic Sequences

A sequence whose consecutive terms have a common difference is called an <u>arithmetic sequence</u>.

Finding the nth term:

Finding the sum:

$$S_n = n/2 (a_1 + a_n)$$

what

you

get

from

jst # last #

(stort)

Students will be able to determine if a sequence is arithmetic and find the common difference.

Example 1: Determine whether or not the sequence is arithmetic. If it is, find the common difference.

yes it is an arithmetic sequence.

b.)
$$a_n = 2^{n-1}$$

$$1, 2, 4, 8, 16, \dots$$

$$+1 +2$$

$$1 + 2$$

$$1 + 3$$

$$2 + 1 + 3$$

$$2 + 1 + 3$$

$$3 + 3 + 1 + 3$$

$$4 + 3 + 3 + 16$$

$$4 + 3 + 3 + 16$$

$$5 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$6 + 3 + 3 + 16$$

$$7 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$8 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1 + 3 + 3 + 16$$

$$1$$

Students will be able to find the formula for the arithmetic sequence.

Example 2: Find a formula for an for the arithmetic sequence.

a.)
$$a_1 = 15, d = 4$$

$$a_n = a_1 + (n-1)d$$

$$= 15 + (h-1)^{4}$$

$$= 15 + 4n - 4$$

$$a_n = 11 + 4n$$

b.)
$$a_5 = 190, a_{10} = 115$$

$$a_{n} = a_{1} + (n-1)d$$
 $115 = 190 + 5d$
 $d = -15$
 $a_{n} = a_{50} + (n-1)(-15)$
 $a_{n} = a_{50} - 15n + 15$
 $a_{n} = a_{65} - 15n$

Students will be able to write the first five terms of the arithmetic sequence.

Example 3: Write the first five terms of the arithmetic sequence. (Use graphing calculator)

a.)
$$a_1 = -10, d = 9$$
 $Ch = Q_1 + (n-1)d$
 $= -10 + (n-1)9$
 $= -10 + 9$
 $Ch = Q_1 + (n-1)9$
 $= -10 + 9$
 $Ch = Q_1 + (n-1)9$
 $= -10 + 9$
 $Ch = Q_1 + 9$
 $= -10 + 9$
 $Ch = Q_1 + 9$
 $= -10 + 9$
 $= -10, -1, 8, 17, 26$

Students will be able to write the first five terms of the arithmetic sequence, and find the common difference.

Example 4: Write the first five terms of the arithmetic sequence. Find the common difference and write the nth term of the sequence as a function of n.

a.)
$$a_1 = 6$$
, $a_{k+1} = 6$, $a_{k+1} = 6$, $a_1 = 6$, $a_1 = 6$, $a_1 = 6$, $a_1 = 6$, $a_2 = 11$, $a_3 = 16$, $a_4 = 21$, $a_5 = 21$, $a_5 = 21$, $a_{5} = 21$, a_{5}

$$d = 5$$

$$a_{h} = a_{1} + (n+1)d$$

$$= (b+1)^{2} + (n+1)^{2} + (n+1)$$

b.)
$$a_{1}=1.5$$
, $a_{k+1}=(a_{k})-2.5$

$$Q_{1}=1.5$$

$$Q_{2}=-1$$

$$Q_{3}=-3.5$$

$$Q_{4}=-6$$

$$Q_{5}=-8.5$$

$$Q_{1}=1.5+(n-1)\cdot 3\cdot 3$$

$$=1.5-3.5 \cdot 13\cdot 5$$

$$Q_{1}=1.5+(n-1)\cdot 3\cdot 3$$

$$=1.5-3.5 \cdot 13\cdot 5$$

$$Q_{1}=1.5+(n-1)\cdot 3\cdot 3$$

$$Q_{2}=-1.5-3.5 \cdot 13\cdot 5$$

$$Q_{3}=-3.5 \cdot 13\cdot 5$$

$$Q_{4}=-1.5 \cdot 13\cdot 5$$

$$Q_{5}=-1.5 \cdot 13\cdot 5$$

Students will be able to find the partial sum of the arithmetic sequence.

Eample 5: Find the indicated nth partial sum of the arithmetic sequence.

a.) 2, 8, 14, 20,...;n = 25

$$S_{n} = \frac{h}{a}(a_{1} + a_{n})$$

$$= \frac{h}{a}(a_{1} + a_{1})$$

$$= \frac{h}{a}(a$$

Students will be able to find the sum of the arithmetic sequence without using the calculator.

Example 6: Find the partial sum without using a graphing calculator.

a)
$$\sum_{n=1}^{100} 2n$$

b) $\sum_{n=51}^{100} n - \sum_{n=1}^{50} n$

$$S_{n} = \frac{n}{a}(a_{1} + a_{n})$$

$$= \frac{100}{a}(a + a_{0})$$

$$= \frac{100}{a}(a + a_{0})$$

$$= 35(51)$$

$$= 3775$$

$$= 350(a_{0}a_{0})$$

$$= 3775 - 1a_{0}75$$

$$= 3500$$

Turn-in:

p.586 (14, 24, 34, 68)

HW:

p.586 (5,11,17,21-41,65-75 odds)