Spiral Review

Evaluate using the change of base formula.

 $2.\log_{4}.045$

$$\frac{10.045}{10.045}$$

Solve the equation for x.

$$3.10g_55 = 10g_5x$$

$$4.10g_44^3 = 10g_4x$$

$$X = 4^3$$

$$X = 64$$

HWQ 3.1-3.3

1. Identify the asymptote and intercept for the function.

$$f(x) = 3^{x-2} + 1$$

2. Write the logarithmic equation in exponential form.

$$\log_3 27 = 3$$

3. Write the exponential equation in logarithmic form.

$$4^{-2} = \frac{1}{16}$$

4. Find the domain, vertical asymptote, and x-intercept.

$$y = \log_{10}(x - 3)$$

p.203 3.3 Properties of Logarithms

More Properties of Logarithms:

- 1.) Product Property: $\log_a uv = \log_a u + \log_a v$ $\ln uv = \ln u + \ln v$
- 2.) Quotient Property: $\log_a \frac{u}{v} = \log_a u \log_a v$ $\ln \frac{u}{v} = \ln u \ln v$
- 3.) Power Property: $\log_a u^n = n \log_a u$ $\ln u^n = n \ln u$

Students will be able use the properties of logarithms to expand as a sum, difference, and/or constant.

Example 1: Use the properties of logarithms to expand the expression as a sum, difference, and/or constant.

c.)
$$\log_2 x^4$$

$$b.) \log_{5} \frac{k}{6}$$

d.)
$$\ln\sqrt[4]{x}$$

Students will be able use the properties of logarithms to expand as a sum, difference, and/or constant.

$$e.) \log_7 a^2 b^{-3} c$$

f.)
$$\log_{m} \frac{x^{2}-9}{x^{5}}$$

$$\log_{m} \frac{(x+3)(x-3)}{x^5}$$

 $[log_m(x+3)+log_m(x-3)]-5log_mx$

$$9.) \log_{3} \frac{g^{4}d}{\sqrt{f}}$$

$$4\log_{3} 9 + \log_{3} d - \frac{1}{2}\log_{3} f$$

h.)
$$\ln \sqrt[4]{\frac{x^4}{y^3}}$$
 $|n \chi^{\frac{4}{4}} - |n y|^{\frac{3}{4}}$
 $|n \chi^{-\frac{3}{4}}|n y|$

Students will be able use the properties of logarithms to condense the expression.

Example 2: Use the properties of logarithms to condense the expression.

a)
$$\ln 5 + \ln x$$

$$\int \ln 5x$$

$$\log_5 h - \log_5 3$$

$$c.)$$
 $3\log_2 x$

$$d \ln x - 4 \ln(x - 2)$$

Students will be able to use the properties of logarithms to condense the expression.

e.)
$$\ln x + \ln(x - 4) - 4 \ln w$$
 f.) $\frac{1}{3} \left[\ln x + \ln 2 \right]$

f.)
$$\frac{1}{3} \left[\ln x + \ln 2 \right]$$

$$3.) \frac{1}{4} \left[4\ln(x-1) + \ln x - \ln(x+5) \right] \qquad \text{h.) } 6 \log_6 x - \log_6 (x-7)$$

h.)
$$6\log_6 x - \log_6(x - 7)$$

Students will be able use to find the exact value of the logarithm without using a calculator.

Example 3: Find the exact value of the logarithm without using a calculator.

a) log_24

 $c.) \log_5 25 \stackrel{\checkmark}{-} \log_5 5$

 $b.) log_3 9^{5.7}$

d) $\ln e^8 - \ln e^6$ $\ln \frac{e^8}{e^6}$ $\ln e^8 - \ln e^6$

Turn-in:

p.207 (54, 62, 78, 90)

HW:

p.207 (47-63, 69-83, 89-101 odds)